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ABSTRACT 

We give a short proof of a formula of de Shalit, expressing the cup product 

of two vector-valued one-forms of the second kind on a Mumford curve 

in terms of Coleman integrals and residues. The proof uses the notion of 

double indices on curves and their reciprocity laws. 

1. I n t r o d u c t i o n  

In [dS88] de Shalit proved a formula for the cup product of two vector-valued 

differential forms on a Mumford curve. This is based on an earlier partial result 

of his [dS89] for two holomorphic differentials. This formula was later reproved 

by Iovita and Spiess [IS03]. The goal of this short note is to give an alternative 

short proof of de Shalit's formula based oil the theory of the double index [Bes00, 

Section 4]. 

Let us state de Shalit's result. Let K be a finite extension of Qp. Consider a 

Mumford curve 7//F,  where F C PGL2(K) is a Schottky group and 7-/C ~ is 

the rigid analytic space obtained by removing the limit points of F. Let V be a 

finite-dimensional//-vector space with a representation of F. The group F acts 

o11 the space of V-valued differential forms on 7/, i~1 (7-/, V), by the rule 

~ ( E  03iVi) = E ( ') ' - l)*0")i~(vi) 

(compare [dS88,1.1]). We let it act by the same formula on spaces of functions. 

A V-valued differential one-form w on 7/ with values in V is F-invariant if 
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7(w) = w for every 7 C F. It is of the second kind if its residues (with values in 

V, computed coordinatewise, in any basis) are 0 at any point z E 7/. Let ( ) be 

a F-invariant bilinear form on V. The cup product of two F-invariant V-valued 

one-forms of the second kind w and r] can be described by the formula 

wUr/= E Resz<F~,~/>, 
zEr\*g 

where F~, is any primitive of co locally near z, which exists (formally) because 

the residue of co at z is 0, and is independent of the choice of the primitive 

because the residue of 7/ at z is 0. Note that  the expression to be summed 

indeed depends only on z modulo P. 

An open annulus is a rigid space isomorphic to the space s < Izl < r. An 

orientation on an annulus may be described as a choice of a parameter z as 

above, with two parameters considered equivalent if they give the same residue, 

as defined below. An annulus together with an orientation is called an oriented 

annulus. A differential form co on an oriented annulus e has a residue Rese co such 

that  Res ~ aizidz = a-1. It can be shown that  there are only two orientations, 

giving residues differing by multiplication by -1 .  By choosing a basis for V the 

residue extends easily to V-valued differential forms. 

We now recall [dS89, Definition 2.5] that  the action of F on 7-/ has a good 

fundamental domain in the following sense: There are pairwise disjoint closed 

K-rational discs Bi and Ci, i = 1 , . . .  ,g, open annuli hi, ci, and elements 7i E F, 

such that  the following holds: 

(1) The "Yi freely generate F. 

(2) The unions Bi U bi and Ci U ci are open discs, still pairwise disjoint. 

(3) For each i, "Yi maps Bi isomorphically onto the complement of Ci U ci and 

bi isomorphically onto ci. 

(4) The complement of [.Ji(Bi U bi U Ci) is a fundamental domain for F. 

We give the annuli ci and bi the orientation given by the discs Ci and Bi 

respectively, i.e., one given by parameters extending to Ci U ci and taking the 

value 0 in Ci (respectively with bi and Bi). Thus, c~ is oriented in the same way 

as in [dS88, 1.5] while bi is oriented in the reversed direction to loc. cit. (the 

bi's do not show up in the formula). With this choice, "Yi: bi --+ ci is orientation 

reversing. 

The formula of de Shalit involves Coleman integration of holomorphic V- 

valued one-forms. While this can be described in a completely elementary way 

since we are dealing with subdomains of the projective line [GvdP80, p. 41], we 

will use the more involved theory of Coleman [CDS88] and adapt it to our case 
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by choosing a basis of V and then integrate coordinate by coordinate. This is 

clearly independent of the choice of a basis because Coleman integration is linear 

(up to constant). Tile key property of Coleman integration is its functoriality. 

It immediately implies that from the property 7w = w we may deduce that for 

any "y E F the function 7(F~) - F~ is constant. We can now state the main 

theorem. 

THEOREM 1.1 ([dS88, Theorem 1.6]): With the data above we/lave 

i 

The main ingredient in the present proof is the theory of double indices and 

their reciprocity laws on curves [Bes00, Section 4]. We need a very easy extension 

of this theory to vector-valued differential forms. Once this has been described, 

the proof is an easy computation. 
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2. D o u b l e  indices of  vector-valued differential fo rms  

In this section we describe a rather straightforward generalization of the theory 

of double indices [Bes00, Section 4] to the case of vector-valued one-forms. The 

extension is fairly trivial since we consider only constant coefficients. We work 
over C_~ for convenience. 

Let A be either the field of meronlorphic functions in the variable z over Cp 

or the ring of rigid analytic fuactions on an annulus {r < Izl < s} over C_~. Let 

Alog := A[log(z)] and let Alog,1 C Aiog be the subspace of F E Alog which are 
linear in log(z), a condition which is equivalent to dF E Adz. 

De~nitio~l 2.1 [Bes00, Proposition 4.5]: The double index, 

ind( ): Alog,t • Alog,1 -+ Cp, 

is the unique aatisymmetric bilinear pairing such that ind(F, G) =- Res FdG, 

whenever F C A. 

Suppose now that C is a proper smooth curve over Cp with good reduction 

X/Fp, and let { x l , . . . ,  xk} be a finite non-empty set of closed points of X. We 

then consider, following [CDS88], the rigid analytic space U obtained from C by 
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removing discs Di of the form Izd < r, with r < 1, where the reduction ofzi is a 

local parameter near the point xi. Let us call these domains simple domains.  

To the disc Di corresponds the annulus ei given by the equation r < Izil < 1, 

which is contained in U and oriented by zi. 
Choose a branch of the p-adic logarithm. Given a rigid one-form w E ~I(U), 

Coleman's theory provides us with a unique up to constant, locally analytic 

function F~ on U with the property that dF,~ = w. Restricted to the annuli ei 
these clearly belong to Alog,1 and one can therefore define, for two such functions 

F,~ and F~, the double index inde, (F~, Fn). It follows from [Bes00, Lemma 4.6] 

that this index depends only on the orientation. One of the main technical 

results of [Bes00] is the following. 

PROPOSITION 2.2 ([Bes00, Proposition 4.10]): We have 

E inde~(F~,Fn) = q~(w) U ~(~), 
i 

where e:  H~R(U ) ~ H~R(C ) is a certain projection. 

We will only need the following immediate Corollary, which follows because 

H~R(~I/Cp) = 0. 

COROLLARY 2.3: Suppose that C = IP 1. Then, in the situation above, 

E inde,(Fw,Fv) =0 .  
i 

We can now extend the theory to vector-valued differential forms in a rather 

trivial way. Suppose we are given a finite-dimensional C~-vector space with a 

bilinear form (,). 

De~nition 2.4: Choose bases {v.~} and {ui} for V. Suppose that the V-valued 

Coleman functions F~ and F~ are written as 

Then, the local index ind~(F~,F,) is given by 

inde(F~, F,) = ~ inde(F~i, Fnj )(vi, uj). 
i , j  

It is easy to check, using the bilinearity of inde, that this definition does not 

depend on the choice of bases. An easy consequence of the definitions is the 

following. 
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PROPOSITION 2.5: Suppose that Rese w = 0. Then inde(F•, F~) = Rese(Fw, ~} 

while inde(Fv, F~) = - Rese(TI, F~}. 

We now restrict to the case C = p1 but consider more general subdomains 

U, obtained by removing closed discs Di = {Iz - a i l <  r~}, including the case 

of removing a point when ri = 0. For each i we consider an annulus ei in U 

surrounding Di, in such a way that the open discs Di U ei are still disjoint. We 

will call the ei the annuli  ends of U. It is easy to see that U can be obtained 

by gluing simple domains U' C p1 along annuli. Note that the U"s are glued 

along annuli with reversed orientations. Given w E ~1 (U, V), one can define its 

Coleman integral F~ first on each of the U"s as before and then by adjusting 

constants along the annuli. The intersection graph of the U ' s  is a tree, so there 

is always a way of choosing an integral globally, This construction coincides 

with the definition of Coleman integrals in [GvdPS0]. 

PROPOSITION 2.6: In the situation described above we have, for any rigid 

V-valued one-form on U, ~ i  indei (F~, F~) = 0. 

Proof: The case V trivial and U simple is Corollary 2.3. We next consider 

the case U = U~ U U~ with U~ and U~ glued along an annulus e. Since e has 

reversed orientations when considered in U~ and U~, the double index inde has 

a reverse sign in these two cases by [Bes00, Lemma 4.6]. Thus, the result for U 

follows from those for U[ and U~. Now, the case of a general U, still with trivial 
V, follows immediately. The general case now follows immediately by choosing 

bases. 1 

PROPOSITION 2.7: Let e bean annulus in T-I and let q~ E F. For w E ~ l  (e, V),  let 

F~ be its integral. Then ~/Fw is a Coleman integral oral(w) on ~/(e). Fhrthermore, 

if ~ is another such form, then we have 

inde(Fw, F,) = :i: ind.y(e)(~/(Fw), ?(F,)) ,  

depending on whether ~/ is orientation reversing or preserving. 

Proof: We choose a basis {vi} and {uj} of V. Suppose Fw = E f i v i  and 

Fv = ~ gju i. Then 

ind~ (F~, F,7) = E ind~ (fi, gi)(vi, ui} 
ij 

and 

ind~(~) ("/(F~), 3'(Fv)) -- E ind,(e) ((~'-1)* fi' ("/-1)*gJ)("/(Vi)' ~(Uj)). 
ij 
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But by [Bes00, Lemma 4.6] we have, for each i, 

ind~(fi,gj) = +ind.~(e)(('y-1)*fi, (7-~)* gj), 

depending on whether ~-1 is orientation reversing or preserving. 

(')'(v~), ~/(uj)) = (vi, uj), the result follows immediately. | 

Isr. J. Math. 

Since also 

3. T h e  p r o o f  

Proof of Theorem 1.1: By the remark after Equation (5) in [dS88] we may 

assume that  bi and ci contain no poles of w and ~. Consider the domain $" = 

p1 _ [-Ji (Bi U Ci), which is of the type considered in Section 2, and its annuli ends 

are the bi and ci. It follows from the description of the fundamental domain 

for F that  .T - [_J~(ci U bi) contains exactly one out of every F class of every 

singularity of either forms. Thus, 

wU~ = E Resx{r,~,r/) = E ind,(F,~,Fo) 
xEy xE.T 

= -- E ( i n d b ,  (F~, Fn) + indc, (F,~, F,1) ) 

where the last equality follows from Proposition 2.6. We now observe that  since 

7i is orientation reversing, we have by Proposition 2.7 that  indb~ (F~,Fn) = 

- indc, (TiFf, 7iFn). Therefore 

-(indb~ (F~, Fv) + indc, (F~, F~)) 

= indc~ (~/iFw, ~/iF~) - indc, (F~, Fv) 

= indc, ('~iFw - F~,TiF~) + indc,(F~,~/iF, j - Fn) 

= Resc, {')'iF~ - F,~, 7ir/} -Resc ,  {w, "yiF, I - F~} by Proposition 2.5 

= ( 'y iF~ - F ~ ,  R e s t ,  ~) - ( a e s c ,  ~ , ' r i F ~  - F ~ ) .  

The theorem follows immediately. | 
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