A SHORT PROOF OF DE SHALIT'S CUP PRODUCT FORMULA

ΒY

AMNON BESSER

Department of Mathematics, Ben-Gurion University of the Negev P.O.B. 653, Be'er-Sheva 84105, Israel e-mail: bessera@math.bgu.ac.il

ABSTRACT

We give a short proof of a formula of de Shalit, expressing the cup product of two vector-valued one-forms of the second kind on a Mumford curve in terms of Coleman integrals and residues. The proof uses the notion of double indices on curves and their reciprocity laws.

1. Introduction

In [dS88] de Shalit proved a formula for the cup product of two vector-valued differential forms on a Mumford curve. This is based on an earlier partial result of his [dS89] for two holomorphic differentials. This formula was later reproved by Iovita and Spiess [IS03]. The goal of this short note is to give an alternative short proof of de Shalit's formula based on the theory of the double index [Bes00, Section 4].

Let us state de Shalit's result. Let K be a finite extension of \mathbb{Q}_p . Consider a Mumford curve \mathcal{H}/Γ , where $\Gamma \subset \mathrm{PGL}_2(K)$ is a Schottky group and $\mathcal{H} \subset \mathbb{P}^1_K$ is the rigid analytic space obtained by removing the limit points of Γ . Let V be a finite-dimensional K-vector space with a representation of Γ . The group Γ acts on the space of V-valued differential forms on \mathcal{H} , $\Omega^1(\mathcal{H}, V)$, by the rule

$$\gamma(\sum \omega_i v_i) = \sum (\gamma^{-1})^* \omega_i \gamma(v_i)$$

(compare [dS88,1.1]). We let it act by the same formula on spaces of functions. A V-valued differential one-form ω on \mathcal{H} with values in V is Γ -invariant if

Received June 13, 2004

A. BESSER

 $\gamma(\omega) = \omega$ for every $\gamma \in \Gamma$. It is of the second kind if its residues (with values in V, computed coordinatewise, in any basis) are 0 at any point $z \in \mathcal{H}$. Let () be a Γ -invariant bilinear form on V. The cup product of two Γ -invariant V-valued one-forms of the second kind ω and η can be described by the formula

$$\omega \cup \eta = \sum_{z \in \Gamma \setminus \mathcal{H}} \operatorname{Res}_z \langle F_\omega, \eta \rangle,$$

where F_{ω} is any primitive of ω locally near z, which exists (formally) because the residue of ω at z is 0, and is independent of the choice of the primitive because the residue of η at z is 0. Note that the expression to be summed indeed depends only on z modulo Γ .

An open annulus is a rigid space isomorphic to the space s < |z| < r. An orientation on an annulus may be described as a choice of a parameter z as above, with two parameters considered equivalent if they give the same residue, as defined below. An annulus together with an orientation is called an oriented annulus. A differential form ω on an oriented annulus e has a residue $\operatorname{Res}_e \omega$ such that $\operatorname{Res} \sum a_i z^i dz = a_{-1}$. It can be shown that there are only two orientations, giving residues differing by multiplication by -1. By choosing a basis for V the residue extends easily to V-valued differential forms.

We now recall [dS89, Definition 2.5] that the action of Γ on \mathcal{H} has a good fundamental domain in the following sense: There are pairwise disjoint closed K-rational discs B_i and C_i , $i = 1, \ldots, g$, open annuli b_i , c_i , and elements $\gamma_i \in \Gamma$, such that the following holds:

- (1) The γ_i freely generate Γ .
- (2) The unions $B_i \cup b_i$ and $C_i \cup c_i$ are open discs, still pairwise disjoint.
- (3) For each i, γ_i maps B_i isomorphically onto the complement of C_i ∪ c_i and b_i isomorphically onto c_i.
- (4) The complement of $\bigcup_i (B_i \cup b_i \cup C_i)$ is a fundamental domain for Γ .

We give the annuli c_i and b_i the orientation given by the discs C_i and B_i respectively, i.e., one given by parameters extending to $C_i \cup c_i$ and taking the value 0 in C_i (respectively with b_i and B_i). Thus, c_i is oriented in the same way as in [dS88, 1.5] while b_i is oriented in the reversed direction to loc. cit. (the b_i 's do not show up in the formula). With this choice, $\gamma_i: b_i \to c_i$ is orientation reversing.

The formula of de Shalit involves Coleman integration of holomorphic V-valued one-forms. While this can be described in a completely elementary way since we are dealing with subdomains of the projective line [GvdP80, p. 41], we will use the more involved theory of Coleman [CdS88] and adapt it to our case

by choosing a basis of V and then integrate coordinate by coordinate. This is clearly independent of the choice of a basis because Coleman integration is linear (up to constant). The key property of Coleman integration is its functoriality. It immediately implies that from the property $\gamma \omega = \omega$ we may deduce that for any $\gamma \in \Gamma$ the function $\gamma(F_{\omega}) - F_{\omega}$ is constant. We can now state the main theorem.

THEOREM 1.1 ([dS88, Theorem 1.6]): With the data above we have

$$\omega \cup \eta = \sum_{i} \langle \gamma_i F_{\omega} - F_{\omega}, \operatorname{Res}_{c_i} \eta \rangle - \langle \operatorname{Res}_{c_i} \omega, \gamma_i F_{\eta} - F_{\eta} \rangle.$$

The main ingredient in the present proof is the theory of double indices and their reciprocity laws on curves [Bes00, Section 4]. We need a very easy extension of this theory to vector-valued differential forms. Once this has been described, the proof is an easy computation.

ACKNOWLEDGEMENT: We would like to thank Michael Spiess for suggesting this project, and the referee for some useful comments. The author is supported by a grant from the Israel Science Foundation.

2. Double indices of vector-valued differential forms

In this section we describe a rather straightforward generalization of the theory of double indices [Bes00, Section 4] to the case of vector-valued one-forms. The extension is fairly trivial since we consider only constant coefficients. We work over \mathbb{C}_p for convenience.

Let A be either the field of meromorphic functions in the variable z over \mathbb{C}_p or the ring of rigid analytic functions on an annulus $\{r < |z| < s\}$ over \mathbb{C}_p . Let $A_{\log} := A[\log(z)]$ and let $A_{\log,1} \subset A_{\log}$ be the subspace of $F \in A_{\log}$ which are linear in $\log(z)$, a condition which is equivalent to $dF \in Adz$.

Definition 2.1 [Bes00, Proposition 4.5]: The double index,

ind():
$$A_{\log,1} \times A_{\log,1} \to \mathbb{C}_p$$
,

is the unique antisymmetric bilinear pairing such that $ind(F,G) = \operatorname{Res} FdG$, whenever $F \in A$.

Suppose now that C is a proper smooth curve over \mathbb{C}_p with good reduction X/\overline{F}_p , and let $\{x_1, \ldots, x_k\}$ be a finite non-empty set of closed points of X. We then consider, following [CdS88], the rigid analytic space U obtained from C by

A. BESSER

removing discs D_i of the form $|z_i| \leq r$, with r < 1, where the reduction of z_i is a local parameter near the point x_i . Let us call these domains simple domains. To the disc D_i corresponds the annulus e_i given by the equation $r < |z_i| < 1$, which is contained in U and oriented by z_i .

Choose a branch of the *p*-adic logarithm. Given a rigid one-form $\omega \in \Omega^1(U)$, Coleman's theory provides us with a unique up to constant, locally analytic function F_{ω} on U with the property that $dF_{\omega} = \omega$. Restricted to the annuli e_i these clearly belong to $A_{\log,1}$ and one can therefore define, for two such functions F_{ω} and F_{η} , the double index $\operatorname{ind}_{e_i}(F_{\omega}, F_{\eta})$. It follows from [Bes00, Lemma 4.6] that this index depends only on the orientation. One of the main technical results of [Bes00] is the following.

PROPOSITION 2.2 ([Bes00, Proposition 4.10]): We have

$$\sum_{i} \operatorname{ind}_{e_{i}}(F_{\omega}, F_{\eta}) = \Psi(\omega) \cup \Psi(\eta),$$

where $\Psi: H^1_{dR}(U) \to H^1_{dR}(C)$ is a certain projection.

We will only need the following immediate Corollary, which follows because $H^1_{dR}(\mathbb{P}^1/\mathbb{C}_p) = 0.$

COROLLARY 2.3: Suppose that $C = \mathbb{P}^1$. Then, in the situation above,

$$\sum_{i} \operatorname{ind}_{e_i}(F_\omega, F_\eta) = 0.$$

We can now extend the theory to vector-valued differential forms in a rather trivial way. Suppose we are given a finite-dimensional \mathbb{C}_p -vector space with a bilinear form \langle, \rangle .

Definition 2.4: Choose bases $\{v_i\}$ and $\{u_i\}$ for V. Suppose that the V-valued Coleman functions F_{ω} and F_{η} are written as

$$F_{\omega} = \sum F_{\omega_i} v_i, \quad F_{\eta} = \sum F_{\eta_j} u_j.$$

Then, the local index $\operatorname{ind}_{e}(F_{\omega}, F_{\eta})$ is given by

$$\operatorname{ind}_e(F_\omega,F_\eta) = \sum_{i,j} \operatorname{ind}_e(F_{\omega_i},F_{\eta_j}) \langle v_i,u_j \rangle.$$

It is easy to check, using the bilinearity of ind_e , that this definition does not depend on the choice of bases. An easy consequence of the definitions is the following.

PROPOSITION 2.5: Suppose that $\operatorname{Res}_e \omega = 0$. Then $\operatorname{ind}_e(F_\omega, F_\eta) = \operatorname{Res}_e\langle F_\omega, \eta \rangle$ while $\operatorname{ind}_e(F_\eta, F_\omega) = -\operatorname{Res}_e\langle \eta, F_\omega \rangle$.

We now restrict to the case $C = \mathbb{P}^1$ but consider more general subdomains U, obtained by removing closed discs $D_i = \{|z - \alpha_i| \leq r_i\}$, including the case of removing a point when $r_i = 0$. For each i we consider an annulus e_i in U surrounding D_i , in such a way that the open discs $D_i \cup e_i$ are still disjoint. We will call the e_i the **annuli ends** of U. It is easy to see that U can be obtained by gluing simple domains $U' \subset \mathbb{P}^1$ along annuli. Note that the U''s are glued along annuli with reversed orientations. Given $\omega \in \Omega^1(U, V)$, one can define its Coleman integral F_{ω} first on each of the U''s as before and then by adjusting constants along the annuli. The intersection graph of the U''s is a tree, so there is always a way of choosing an integral globally. This construction coincides with the definition of Coleman integrals in [GvdP80].

PROPOSITION 2.6: In the situation described above we have, for any rigid V-valued one-form on U, $\sum_{i} \operatorname{ind}_{e_i}(F_{\omega}, F_{\eta}) = 0$.

Proof: The case V trivial and U simple is Corollary 2.3. We next consider the case $U = U'_1 \cup U'_2$ with U'_1 and U'_2 glued along an annulus e. Since e has reversed orientations when considered in U'_1 and U'_2 , the double index ind_e has a reverse sign in these two cases by [Bes00, Lemma 4.6]. Thus, the result for U follows from those for U'_1 and U'_2 . Now, the case of a general U, still with trivial V, follows immediately. The general case now follows immediately by choosing bases.

PROPOSITION 2.7: Let e be an annulus in \mathcal{H} and let $\gamma \in \Gamma$. For $\omega \in \Omega^1(e, V)$, let F_{ω} be its integral. Then γF_{ω} is a Coleman integral of $\gamma(\omega)$ on $\gamma(e)$. Furthermore, if η is another such form, then we have

$$\operatorname{ind}_{e}(F_{\omega}, F_{\eta}) = \pm \operatorname{ind}_{\gamma(e)}(\gamma(F_{\omega}), \gamma(F_{\eta})),$$

depending on whether γ is orientation reversing or preserving.

Proof: We choose a basis $\{v_i\}$ and $\{u_j\}$ of V. Suppose $F_{\omega} = \sum f_i v_i$ and $F_{\eta} = \sum g_j u_j$. Then

$$\operatorname{ind}_e(F_\omega,F_\eta) = \sum_{ij} \operatorname{ind}_e(f_i,g_j) \langle v_i,u_j \rangle$$

and

$$\operatorname{ind}_{\gamma(e)}(\gamma(F_{\omega}),\gamma(F_{\eta})) = \sum_{ij} \operatorname{ind}_{\gamma(e)}((\gamma^{-1})^* f_i,(\gamma^{-1})^* g_j) \langle \gamma(v_i),\gamma(u_j) \rangle.$$

But by [Bes00, Lemma 4.6] we have, for each i,

$$\operatorname{ind}_{e}(f_{i},g_{j}) = \pm \operatorname{ind}_{\gamma(e)}((\gamma^{-1})^{*}f_{i},(\gamma^{-1})^{*}g_{j}),$$

depending on whether γ^{-1} is orientation reversing or preserving. Since also $\langle \gamma(v_i), \gamma(u_j) \rangle = \langle v_i, u_j \rangle$, the result follows immediately.

3. The proof

Proof of Theorem 1.1: By the remark after Equation (5) in [dS88] we may assume that b_i and c_i contain no poles of ω and η . Consider the domain $\mathcal{F} = \mathbb{P}^1 - \bigcup_i (B_i \cup C_i)$, which is of the type considered in Section 2, and its annuli ends are the b_i and c_i . It follows from the description of the fundamental domain for Γ that $\mathcal{F} - \bigcup_i (c_i \cup b_i)$ contains exactly one out of every Γ class of every singularity of either forms. Thus,

$$\omega \cup \eta = \sum_{x \in \mathcal{F}} \operatorname{Res}_x \langle F_\omega, \eta \rangle = \sum_{x \in \mathcal{F}} \operatorname{ind}_x (F_\omega, F_\eta)$$
$$= -\sum_i (\operatorname{ind}_{b_i} (F_\omega, F_\eta) + \operatorname{ind}_{c_i} (F_\omega, F_\eta))$$

where the last equality follows from Proposition 2.6. We now observe that since γ_i is orientation reversing, we have by Proposition 2.7 that $\operatorname{ind}_{b_i}(F_{\omega}, F_{\eta}) = -\operatorname{ind}_{c_i}(\gamma_i F_{\omega}, \gamma_i F_{\eta})$. Therefore

$$\begin{aligned} -(\operatorname{ind}_{b_i}(F_{\omega},F_{\eta}) + \operatorname{ind}_{c_i}(F_{\omega},F_{\eta})) \\ &= \operatorname{ind}_{c_i}(\gamma_i F_{\omega},\gamma_i F_{\eta}) - \operatorname{ind}_{c_i}(F_{\omega},F_{\eta}) \\ &= \operatorname{ind}_{c_i}(\gamma_i F_{\omega} - F_{\omega},\gamma_i F_{\eta}) + \operatorname{ind}_{c_i}(F_{\omega},\gamma_i F_{\eta} - F_{\eta}) \\ &= \operatorname{Res}_{c_i}\langle\gamma_i F_{\omega} - F_{\omega},\gamma_i \eta\rangle - \operatorname{Res}_{c_i}\langle\omega,\gamma_i F_{\eta} - F_{\eta}\rangle \quad \text{by Proposition 2.5} \\ &= \langle\gamma_i F_{\omega} - F_{\omega},\operatorname{Res}_{c_i}\eta\rangle - \langle\operatorname{Res}_{c_i}\omega,\gamma_i F_{\eta} - F_{\eta}\rangle. \end{aligned}$$

The theorem follows immediately.

References

- [Bes00] A. Besser, Syntomic regulators and p-adic integration II: K_2 of curves, Israel Journal of Mathematics **120** (2000), 335–360.
- [CdS88] R. Coleman and E. de Shalit, p-adic regulators on curves and special values of p-adic L-functions, Inventiones Mathematicae 93 (1988), 239–266.

Vol. 151, 2006 A SHORT PROOF OF DE SHALIT'S CUP PRODUCT FORMULA 59

- [dS88] E. de Shalit, A formula for the cup product on Mumford curves, in Séminaire de Théorie des Nombres, 1987–1988 (Talence, 1987–1988), University Bordeaux I, Talence, 1988, pages Exp. No. 47, 10.
- [dS89] E. de Shalit, Eichler cohomology and periods of modular forms on p-adic Schottky groups, Journal für die reine und angewandte Mathematik 400 (1989), 3-31.
- [GvdP80] L. Gerritzen and M. van der Put, Schottky groups and Mumford curves, Lecture Notes in Mathematics 817, Springer, Berlin-Heidelberg-New York, 1980.
- [IS03] A. Iovita and M. Spieß, Derivatives of p-adic L-functions, Heegner cycles and monodromy modules attached to modular forms, Inventiones Mathematicae 154 (2003), 333-384.